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\551 ABSTRACT

The problem of analyzing an initialized loop and verifying
that the program computes some particular function of its inputs
is addressed. A heuristic technique for solving these problems
is proposed which appears to work well in many commonly occurring
cases. The use of the technique is illustrated@ with a number of
applications. A hierarchy of initialized 1loops is suggested
which is based on the "effort" required to apply this methodology
in a deterministic (i.e. guaranteed to succeed) manner. It is
explained that in any case, the success of the proposed heuristic
relies on the 1loop exhibiting a "reasonable" form of behavior.
An informal categorization of such programs 1is made which |is
based on two opposing problem solving strategies. It is sug-
gested that our heuristic is naturally suited for use on Dprograms

in one of these categories.
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A Heuristic For Deriving Loop Functions

1. Introduction

In this report, we will consider programs of the following

form:

<INITIALIZATION STATEMENTS>
while <LOOP PREDICATE> do

: <LOOP BODY STATEMENTS>

‘ od.

, These programs tend to occur frequently in programming in oréer

L to accomplish some specific task, e.g. sort a table, traverse a
' data structure, calculate some arithmetic function, etc. lore

2 Precicely, the intended purpose of such a program is often to

compute, in some particular output variabhle(s), a specific func-

< tion of the program inputs. 1In this paper, we address the prob-

{ lem of analyzing a projram of the above form in order to prove

its correctness relative to this intended functisn.

Cne commen strategy taken to solve this problem is to theu-
ristizcally synthesize a sufficiently strong inductive ascertion

1 {i.e. loop invariant [Hoare $692]) for p-oving the correctress of

the program. A large number of techniques to aié in the Jiscover

v

of these assertions have agpeared in  the literatur2® (se2, for

exanple, [TeQEtéit 74, Zatz & 'lanna 75]). It is our viz2u, tou-
.

ever, that tiese i2chniques seen to Ye more "mashine orientedn

than "peodl2 nriénte”,®™ That is, they seen gearel toward use in

4enarator for an automatic projran verification sye-

.
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A Heuristic For Deriving Loop Functions

ogy proposed here 1is intended to be used by programmers in the

process of reading (i.e. understanding, documenting, verifying,

etc.) programs and is tailored to the commonly occurring verifi-

cation problem discussed above. {

An alternative to the inductive assertion approach which is
taken in this paper is to invent an hypothesis concerning the 4

general input/output behavior of the WHILE loop. Once thics has

neen Aone, the loop can be proven/disproven correct with respect
to the hypothesis using standard techniques [Mills 72, Mills 75,
Basu & Ilisra 75, Morris & Wegbreit 77, ‘Jegbreit 77, !isra 78].
If the hypothesis is shown to be valid, the
correctness/incorrectness of the program ir guestion follows
immediately. It has been shown [Basu & iisra 75, Misra 78, Misra
79, Basu 80] that this loop hypothesis can be generzated in a
deterministic manner (i.e. one that is guaranteed to succeed) fcr~

two restricted classes of programs. The anpvroach suggested hore

. .

iﬁ is similar to this method in that the same type of loo» 'hehavior
! seens to he exploited in order to obtain the hvpothesis, Our

. anoroach is not detsrministic in general, but as a result, is

dely applicakle and easior to use &1

e

int?nde?2 *+o0o e nmore w
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thes

W

creviously proonsed in the literature,

One vwview of the problem of Adiscovering the gennral

< iaput /outnut tehavior ¢f the WHILT locn urier censideration might
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A Heuristic Por Deriving Loop Functions

input/output behavior of the loop based on these results. Deci-
sions that need to be made when using such a technique include
how many sample inputs to use, how should these inputs be
selected, and how should the general expression be inferred.
Another consideration is that hand execution can be a difficult
and an error prone task. Indeed, it seems that the 1loops for
which hand execution can be <carried out in a straightforward
manner are the ones that are least in need of verification or

some other type of formal analysis.

Qur methodology is similar to this technigue in that we
attempt to infer the general behavior of the loop from several
sample loop behaviors. 1In contrast to this technique, however,
the sample behaviors are not obtained from hand execution, rather
they are obtained from the specification for the initialized loop
program. In many of the cases we have studied, tihe general
benavior of the loop in question is gQuite easy to gJuess fron
thesa szamples. This is not to say that the loop computes a "sim-
ple" function of its inputs or that the loop necessarily operates
in a "simple" manner. uch more accurately, the ease with which
te jeneral Dehavior can be infarred from the samrles is cdue to 2

'simple” connactior Yhetween a2 chanje in the inpu

cr

(1]

valua of an

PN

[N
3
[oN
cr
J4a
9

lizad variable and the corresponding chanje caus=d in %he

regult droluced by the loop. e will expanrd on this idea in what




A Heuristic For Deriving Loop Functions

2. The Technique

In order to describe the proposed technique, we represent

the verification problem discussed above as follows:

(x € D(£)}

X = R(X);

while B(X) do
X := H(X) <

{v=F(x0)}.

In this notation, X represents the data state of the program. The

symbols K and 4 are data state o data state functions
corresponding to the effects of the initialization and loop body

respectively. The function 3 is a nredicate over the data state.

The program is specified to produce in the wvariable v a function

' £ of the input data state 0. The notation D(f) apoearing in the

projram precondition is the domain of the function £, 1i.2. the

rh

set of states €for vhich iz 3efineAd.

e —

c’f’

If D is the set of 2all possible program data states ard T ic

th- =gt of values that the variablz v mayvy assume, the svdecificsa
+ion function £ has the functionality £ : D -> T, In orf2r o

A7

varifv a2 srogran of this forrm, we chscse £n f£ind a functicn 3

.i. . .
Teliaty Aat2 states goneratn? as the Loc) itarates., If thic is

2N - -, - $ - -~ . T A} 1 - - 2 -3 < -

the cainy, tha "aon iz eai? ta he clocad [Taszu & ‘tfsra 73, vizrza
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A Heuristic For Deriving Loop Functions

We briefly consider two alternative approaches to synthesiz-
ing this 1loop function g. The alternatives correspond to the
"top down"™ and “"bottom up" approaches to creating inductive
assertions discussed in [Katz & Manna 73, Ellozy 8l1l]. 1In the
"top down" alternative, the hypothesis g answers the question
"what would the general behavior of the loop have to be in order
for the program to be correct?" If such an hypothesis can be
found and verified, the correctness of the program is esta-
blished. 1If the program is incorrect, no such wvalid hypothesis
exists. In the "bottom up" alternative, the hypothesis g answers
the question "what is the general behavior of the loop?" In this
case, a valid hypothesis always exists. Cnce it has been found
and verified, the program is correct if and only if the initiali-

zation followed by g is equivalent to the function £.

The advantage of a "top down" approach is that it is usually
easier to apply in practice because the verifier has more infor-
mation to work wvith when synthesizing the hypeothesis., The ¢digad-
vantage of such an approach is thet it may not be as well-suited
to Cisproving the correctness of programs. This 1is hecause to
iig»prove a pregram, the verifier nust envloy an argument wnich
showus that there does not exist a valid hypothesis. ~he nmeths?
Jescribed in this paper is based on *he "ton Jdown" apircach. e

1

will return Yo & liscussion cf this advantaze an? Jizadvantaze
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A Heuristic For Deriving Loop Functions

of the function g which result from this assumption. First, the
correctness of the program implies
(1) X0 € D(f) -> £(X0)=g(K(X0)).
That is, for inputs satisfying the program precondition, the ini-
tialization followed by the 1loop yields the desired result.
Secondly, since the loop computes g,
3(X0) -> g{X0)=g(H(X0))
holds by the "iteration condition" [*iisra 73] of the standard
technique for showing the loop computes g. This implies
B(K(X0)) -> g(RX(X0))=g(H(K(X0))).
Zombining with (1) yields
(2) X0 € D(f), B(X(X0)) -> £(X0)=g(I(KR(X0))).
At this point we choose to introduce an additional universally
guantified state variable X into each of (1) and (2). The
results are the equivalent conditions
(2°) 0 & D(f), X=X(XC) =-> g(X)=£(x0)

anad

—
[¥)

A Y
-
s
o1
(&9 ]
[}

D(E), 3(K(10)), X=(X(X0)) -> g(X)=£(X0C).
Ta summarize by saving that {if th2 program is correct with

razpect tn its specification, conditions (17) and {27) hold.

Suppose now that the speciflication (f), and the input/s
Sehavior of the initialization (%), lzon predicate (B) 2nd Yoon

2ody (%) are %nown. given this, (17) 2an? (2°) can De usz2? ot~

-~ ~on —~ .
iny %h2 zZeorcecknass ©f th2 program. Indeed, (L7) anl (27 can he
thcagnt of 23 A2fining zseortions of %12 unkaown Yoop function 7 ve
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A Heuristic For Deriving Loop Functions

are seeking. Specifically, each of (1°) and (2°) can be viewed
as defining a function g with a restricted domain. 1In this
light, for example, (1°) defines the function (i.e. set of
ordered pairs)

g = {(X,2) | TE X0 € D(E) ST (X=K(X0) & 2=£(X0))}.

We call (1°) and (2°) constraint functions since they are func-

tions and serve as constraints (i.e. requirements) on the general
loop function. !lore precisely put, the constraint functions are
subsets of the general loop function. The hope is that if these
subsets are representative of the whole, the general 1loop func-
tion may be inferred through analysis of the constraint func-

tions.

In what follows we describe a 4 step process for construct-~

ing a 4general 1loop function g from these constraint functions.

72 suggest that the reader not be taken aback by what may azpear

to be congiderable complexity in the description of cur tech-
nigue. e intentinnally have attempted to descrihe the procedure
in a careful, precise manner. Turthe:zmeore, the tecinigque isg
Sased on a few simple ifeas and, ornce those ideas have he=2n

Tearned, we fa2el it czan De applied rith a congifarable ameunt of

Izample 1 - As we descrihe these steps, ve will {llustrate

their application on the follewing triviial »srogram o eozpute

Sa e aoma o e

-
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A Heuristic For Derivi.) Loop Functions

{v>=0}

z := 0;

while v # 0 do
Z 1= 2 + K;
v :i=v -1
od

{z=v0*k}.

Ye proceed with the example analysis as follows.

Step 1 : RECORD - The first step consists of recorcding the

constraint functions (copied from (1°) and (27))

Cl: X0 € D(f), X=K(X0) -> g(X)=f(X0)

C2: X0 € D(f), B(K(X0)), X=H(K(X0)) -> g(X)=£(X0)
As a notational convenience, we

dispense with the Jdata state

notation and use program variables (possibly subscripted by 0 to
cdenote their initial values) in these function definitions. The
terms X0 € D{f) and £(X0) come from the pre and post conditicns
for th2 initialized loop respectively. The term Y=%(¥0) is bhased

on tha input/output tehavior of the i

jo ]
[

1y

tialization, and the terrs

2({X3)) and X=H(¥Y(XJ)) together <Cascribe the input /outnus

bDehavinr of the initialization followed by exactlv 1 loen itera-

e illustrate these iieas with tha

K|
L4

nltinlication

in Zxamplae 1. The constraiat functions for this zrngram are as

i: vi>=), v=v2, 2=0 -> g{z,v,3)=vi*x

CZ2: 93>0, v=v0-1, z=% => g{z,v,%)=v0*%.




A Heuristic For Deriving Loop Functions

Secondly, g is defined as a function of each program variable
which occurs in the loop predicate or loop body. That is, g is a

function of the variabhles on which the behavior of the 1loop»

directly Adevends. Furthermore, note that in C2, the term v0>0

a
=

captures both X0 € D(f) (i.e. v0>=0) and B(X(X)) (i.eo. v0#0). As

w

a final remark, in a constraint function we will use the phrase

t domain requirement to refer to the collection of terms to the

1 left of the "->" symbol and function expression to refer to the

expression which defines the value of g (e.g. v0*k in hoth Cl and

] C2 ahove).

Step 2 : SIMPLIFY - All variables which appear in the func-

tion definition but not in the parameter list for g nust eventu-
ally bhe eliminated from the definition. On occasion, it is pos-

sible to solve Ffor the value of such a variainle in the domain

4.

requirenent and substitute the equivalent expression for it

‘ throughout: the Adefiniticon. 7o illustrate, in the Jefinition CT1

,,: apove, v0 is a candidate for elimination. e now iks value 2as 2
function of v (i.e. vd=v), hence we czn SIIPLIFY thig daofinition
to

L] 2 L s il v, 2
red sinzce with the oukstitu-

2

imte that the term v=vl hias Jisappge
tion it 1z equivalert to TRUI, In a similar manner, the secnHrd
cecnstraint funchtion can hHe SINPLITIED to (using v0=v+l)

e | 22 v>=s), z=k -> s{z,v,k)=(7+1)*%,

ey ! el [SR Y 3 Cepd
ki arnnloiag thiis sinaplifving

R PR

2
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A Heuristic For Deriving Loop Functions

domain of the constraint function is not mistakenly extended.
For example, if 4@ and 40 are integer variables, the definition
d0>0, d=30*2 -> g(4)=40*8
does not SIMPLIFY to
d>0 -> g (4d)=ax%4
since the first function defines a value of g only for positive,
even values of d while the second definition defines a value of g
for all positive d. The first function does SIMPLIFY to
d>0, ZEVEN(d) -> g(d)=d*4

waere EVEN(d) is a predicate whizt. is TRUE iff & is even.

Sten 3 : REVWRITE - Variables which appear in the parameter

list for g but not in the function expression of its definitiorn
are candidates to be introduced 1into the function exdression.

Zach of these variables will e bound to a term in the Aomair

L]

3 %2

p e

egquirenent of the definition. The purpvose of this step

te the function axpressicn of T2 (basad on the proserties of

e

IewWr

th2 onaration(s) involved) in ord2r %o introduce these ta2rns int>

e

the function expression. 7To illustrate, consifar the above 21°-
PLITIZD C2 definition. The variadle z 1is a candidate o e

inkroduced  into the finction axpcession {(v+1)*k. It iz boun? to

thae tern X in the Jdomain raguiroment. This we need to intreduce
an adiitional term X inte this function exnressien. 0One way o
7o this Ig to translate the exoression to viri+k 3ased nn +his,

v R b I has b - "
re NTUUMITE C2 as

No=> g3(z,v,N) = rRR+k.

~2: 7>=0, z2=

L R T L i N e e

) S

—— —
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A Heuristic For Deriving Loop Functions

Step 4 : SUBSTITUTE - In steps 2 and 3, the constraint func-

tions are massaged into equivalent definitions in order to facil-
itate step 4. The purpose of this step is to attempt to infer a
general loop function from these constraints. We motivate the
process as follows. Suppose we are searching for a particular
relationship between several quantities, say E, m and ¢. Furth-
ermore, suppose that through some form of analysis we have deter-
mined that when m has the value 17, the relationship E=17*(c**2)
aolds. A reasonable guess, then, for a general relationship
between E, m and c would be E=m*(c**2), This would be particu-
larly true if we had reason to suspect that there was a rela-
tively simple connection between the dguantities m and E. e
arrived at the general relationship by substituting the gJuantity
m for 17 in the relationship which is known to hel:d when m has
the value 17. Viewed in this light, the purpose of the con-
straint function T2 is to obtain a relationshivn which anlds for a
specific value of m (e.g. 17). The step REVWRITE exposes the term

17 in this relationship. Finally, SUBSTITUTE substitutes m for

H
s
o
o)
PD
"t
D
’.-‘

ationship and proposes th2 result as a 3jeneral -ela-
tionship between T, m and ¢. In terms of the multinlication »ro-

1ram Seing cnnegidered, tha 3TR2ITITUVE s

ot

en calls €“or rz2placinc
one of the terms %X in the akove rewritten function expressicon
with the term z. The two possible substitutions lead to thae fol-
1nwing general functions:

v>=0 => 3(z2,v,X)=vki+z
an:

v>=0 -> g(z,v,%)=vrz+i,

-21l-

B e e -




. B o e

- —

A Heuristic Por Deriving Loop Functions

Both of these (necessarily) are generalizations (i.e. supersets)
of C2, however, only the first is also a generalization of Cl.
Hence this function is hypothesized as a description of the gen-

eral behavior of the above WHILE loop.

We have applied the above 4 steps to obtain an hypothesis
for the behavior of the loop in question. Since this description
is sufficiently general (specifically, since the loop is closed
for the Adomain of the function), we can prove/disprove the
correctness of the hypothesis using standard verification tech-
niques [Mills 75, Misra 78]. Specifically, the hypothesis is
valid if and only if each of

- the loop terminates for all v>=0,

- v=0 -> z=z + v*k, and

- z + v*k is a loop constant (i.e. v0*k0=z + v*X is a loop

invariant)
hold. 7e remark that the loop hypothesis is selected in such a
way that 1f it holds (i.e. the loop does compute this general
function), the 1initialized 1loop 1is necessarily correct with

respect to £,

we eamphasize that there are usually an  infinite nunber of
genaralizations of the constraint functions €1 and 72, and that,
Cepending on how REIRITE and SU3STITUTE are applied, the tech-

nigu

9]

is capable of generating any one of these generalization

n

Foar ekarmple, RTWRITI and 3U3STITUTE applied teo the nultinlica

PP
&

r

Q

icn

sxamplz2 could have produced

22 w>=l, z=k -> g({z,v,4)=
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v*k + 3%k + k*k*(v-7)/(4*k) + K*k*k/(k*k)
~ k*k*k*(v=7)/(4*k*k) - k*k*k*3/(k*k)
and
v>=0 -> g(z,v,k)=
vtk + 3%z + zrz*(v-T7)/(4*k) + z*2*z/(k*k)
- zhz*zk (y=T) /(4*Kk*k) -~ z*z*z*3/(k*k)
respectively, where "/" denotes an integer division (with trunca-
tion) infix operator which yields 0 when its denominator is 0.

This last function is also a generalization of Cl and C2.

It has been our experience, hcwever, that many initialized
loops occur in which there exists some relatively simple connec-
tion between different input values of the variables constrained
by initialization and the corresponding result produced by the
I"YILE loop. Most often in practice, these variables are bound to
values in the domain requirement of 2 which suggest an applica-
tion of REWRITE that uncovers this relationship and 1leads to a
correct hypothesis concerning the general loop behavior. In the
following section we illustrate a number of example anplications

of this tecanique.

3. Applications

-

3xample 2 - The following Ddrogram computes integer expcnen-
tiation, This example serves to illustrate the usez of the tech-
nigue when the loop body contains several naths:
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{a>=0}
w:=l;
while d # 0 do
iﬁ odd(d) then w :=w * c fi;

C :=c*c; d := 4/2
! od
‘ {W=EU - dO}o

¥ The infix operator “ appearing in the postcondition represents |
integer exponentiation. The first constraint function is easily
obtained:
é0>=0, c=c0, 4=380, w=1l -> g(w,c,d)=c0"30
and SIMPLIFIES to
Cl: 4>=0, w=l -> g(w,c,d)=c"4d.

3ince there exist two paths through the loop body, we will obhtain

two second constraint functions. The first of these deals with
the path which updates the value of w and is executed when tnhe
input value of d is odd. The function is

30>0, 0d4d(20), w=c0, c=c0*c0, 3=3A0/2 -> g(w,c,d)=cC"d0
' \ which SIMPLITIES to
\ c2a: Jd>=0, c=w*w -> J(w,3,3)=uw"(*2+1) .,
The function corresponding to the other loon holy rath is

3C>0, even(dl), w=1l, c=c0*c0, d=30/2 -> g(w,c,d)=c0"30

and SINPLITITS to

2>=0, w=l, SOUARZ(c) -> 3(v,c,d)=80R7(c) " (i*2)
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PLIFIED function is only defined for values of c¢ which are per-~
fect squares. Note that C2b is a subset of Cl and hence is of no
additional help in characterizing the general loop function. The
heuristic suggested in REWRITE is to rewrite the function expres-
sion w"(d*2+1) of C2a in terms of w, w*w (so as to introduce c¢)
and 4. The peculiar nature of the exponent in this expression
leads one to the equivalent formula w*((w*w)“d). Applying SUB-
STITUTE in C2a yields
d>=0 -> g(w,c,d)=w*(c”d).
This function is in agreement with (i.e. is a superset of) Cl and

thus is a reasonable hypothesis for the general lcop function.

In this example, the portion of C2 corresponding to the loop
body path which bypasses the updating of the initialized data is
redundant with Cl. Based on this, one night conclude that such
loop 2edy paths should be ignored when constructing C2. Consider-
ing.2ll loop body paths, however, does have the advantage that an
incorrect program could vDossibly be disproved (at the tine the
genaral loop function 1is being constructed) by observing an
inconsistency between constraint functions 71 aad (2. Por
incstance, in thie example, if the ascsignment to ¢ R2d been written
c*2", the 2bov2 analysis woull nave <2tecte” an inconsistancy

in th2 constrairts on the general loopn function. Such

5
W
3
e
-3
(9]
o]
3

!

sistency inmplies that the aypotliesis bDeing sought for the 3enezal

Sehavior cI the loor does not exist, 227 hence, that the 2rogram

[N

. e .
ts gnecifization,

i3 not correct with raespect +o

PO TR P SR &




A Heuristic For Deriving Loop Functions

In the previous section, the reader may recall that awkward-
ness in disproving programs was offered as a disadvantage of a
"top down" approach to synthesizing g. It has been our experi-
ence, however, that, as in the above instance, an error in the
program being considered often manifests itself as an incon-
sistency between Cl and C2. 3Such an inconsistency is usually
"easy" to detect and hence the program 1is "easy" tc disprove.
thile it is difficult to give a precise characterization of when
this will occur, intuitively, it will be the case ©provided that
the M"error" (e.g. c*2 for c*c) can be "executed" on *he first

iteration of the loop.

Example 3 - The following program counts the number of nodes
in a nonenpty birary tree using a set variable s. It differs
from the previous example in that more than 1 wvariable 1is 1ini-
tialized, The tree varia®ble t iz th2 input tree whose noides are
to e counted. "e use the notation left{t) and right(t) for the
left and right subtrees of t respectively. T™ne wredicate

enpty () is TRUZ 1{£f t is the empty tree (i.=2., ccntains 0 nedes).

{"empty (t) }

n o= 0; 5 = {t}:

“hite o # {} in
selec: 2nd remove sone element 2 from ¢
n = n + 1;
if “empty( left(e)) then s := ¢ U {1e€t (e)l £33
z: “empty(right(e)) Ehen s := z U (rishtle)} FI
od

{ o
L3

Ca=TEDES (L) }

¥
3
)

“ntation MNIS (L) asmearing in the gostcendition ctands  for

T
[y
()

nuriber ¢f nodleg in Hiparyv tree t. The firzct congtraint fanc-
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A Heuristic Por Deriving Loop Functions

tion is
Cl: “empty(t), n=0, s={t} -> g(n,s)=NODES(t).
Rather than considering each of the 4 possible paths through the
loop body individually, we abstract the combined effect of the
two IF statements as the assignment
s := s U SONS(e),
where SOMS(x)} is the set of 0, 1 or 2 nonempty subtrees of x.
Applying this, the second constraint function is
C2: Tempty(t), n=1, s=8ONS(t) -> g(n,s)=NODES(t).
Ve choose to REWRITE the function expression for C2 using the
recursive definition that NODES(¥) for a nonempty tree x is 1
plus the NODES value of each of the 0, 1 2r 2 nonempty subtrees
of x. Specifically, this would be
1+5UM(x,SONS(t) ,NCODES (X))
where SM(A,3,C) stands for the sumnmation of C over 211 A € 3,
Applying SU3STITUTE in the obvious way yields
“empty(t) -> g{n,g)=n+3UM(x,s,VODES (X))

witichh is in z2greexent vwith C} and is thus a reascnable guess fer

the general ‘ocp function 3.
Tun remarks are in orler concerning this example. The fire:
Zea2ls witk the condition Tempty(t) appearing in %he Jomain

radquirenent of the obtaired functinn. The reader nay wonler, if
t is rot refecrenced ia the loop (it is not in the paraneter lict

£ar 4), bow can th2 lnon tehavior J2nend Hn a2mpity(t)? The snsvor
’ » - -

4
-

()

tmat it obviously cannnt; the 2hove {unchinn iz simpty

-
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A Heuristic For Deriving Loop Functions

g(n,s)=n+SUM(x,s,NODES(x)) .
For the remainder of the examples of this section, we assume that
these unnecessary conditions are removed from the domain require~

ment of the constraint function as part of the SUBSTITUTE step.

As a second point, in Example 3 we encounter the case where

obtained function is, strictly speaking, too general, in that

its domain includes "unusual" inputs for which the behavior of

the 1loop does not agr e with the function. For instance, in the

example, the loop com;: ¢~s8 the function
3(n,s)=n+StM({x,s,NODCS(x))

only under the proviesisn that the set s -oes not contain the

enpty tree. This is normally not a serious problem in practice.

One proceeds as before, i.e. attempts to push through a proof of

correctness using the inferred function. 1If the proof is suc-

cessful, the pnrogram has been verified; otherwise, the charac-

teristics of the innut “Aata which cause the verification
condition(s) to fail (2.5. s containg an empty tree) suggest an

appropriate restriction cof the input 4domain (2.9. = contains only

nonempty trees) and the program can then bDe verifi
naw, ra2stricte” function.

Zxample 4 [Gries 7¢] - Ackermann®s function A(a,n)

can

1]

[V

“efined as follows for all natural nurters n an? n:

A{C,n)
A+l 0)
A{n+1l,n+1)

n+1
2{n, 1)
Alm,A(n+i,n)) .

LI}




A Heuristic Por Deriving Loop Functions

sequence variable s of natural numbers. The notation s(l) is the
rightmost element of s and s(2) is the second rightmost, etc.
The sequence s{..3) is s with s(2) and s(l) removed. We will use
< and > to construct sequences, i.e. a sequence s consisting of n

elements will be written <s(n), ... ,s{2),s(l)>.

{m>=0,n>=0}

S := <m,n>:

while size(s) # 1 do
if s(2) = 0 then s
elseif s{1)=0 then s
else s
od

{s=<A(m,n) >}

S(..3)
s{..3)
s(..3)

<s (1) +1>
<S(2) "'1'1>
<s(2)~-1,s(2),s(l)-1> £fi

Por this program, the first constraint function is
Cl: m>=0, n>=0, s=<m,n> -> g(s)=<A{(m,n)>,
™e second constraint functions corresponding to the 3 paths

through the loop body are

C2a: m=0, n>=0, s=<n+l> -> g(s)=<A{m,n)>
c2k: m>0, n =0, s=<m=-1,1> -> g{s)=<A(n,n)>
C2c: m>%, n >0, s=<m~-1,m,n=1> => g(s)=<A(m,n)>.

BEWRITING these 3 based on the avdove cdefinition of A yields
m=0, n>=0, s=<n+l> -> g{s)=<n+l>

>0, n =9,

n

=<n-1,1> -> g{(s)=<aA(m-1,1)>

>0, n >0, s=<01-1,n,n-1> -> g(s)=<A{(n-1,A(n,n-2))>.

7]

SUBSTITUTING here yields

s=<s(1l)> -> g(s)=<s(l)>
3=<3({2),3(1)> ~> 3(s)=<a(s(2),s{l))>
3=<5(3),5(2) ,s(1)> -> 5{35)=<A(s(3) ,a{s(2),s(1)))>.

‘iota that th2 second of thes2 functions implies Cl. The 3 zeenm

W




A Heuristic For Deriving Loop Functions

to suggest the general loop behavior (where n>1)

g(<s(n),s(n-1), ... ,s(l)>) =

<A(s(n),a(s(n=-1), .. A(s(2),5(1)) ... ))>.

We remark that in the first 3 examples, the heuristic
resulted in a loop function which was sufficiently general (i.e.
the loop was closed for the domain of the inferred €function).
Exanmple 4 illustrates that this does not always occur. The loop
function heuristic is helpful in the example in that it suggests
a behavior of the loop for general sequences of length 1, 2 and
3. Based on these results, verifier is left to infer a behavior

for a sequence of arbitrary length.

Exarple S - Let v be a one cdimensional array of length n>0
which contains natural numbers. The £ollowing program finds the

maximun element in the array:

ms:=0; i := 1;

while 1 <= n 2o
Tf n < v[iT then n := v{i] fi;
i:=1i+1 -
£i

Tie rotation BIGGZST(v) appearing in the postcnandition stands for
tha largest element of v. The following constraint functions are
onbtained

2l: m={, i=

[ 3nd

-> g(m,1i,v,n)=BIGGEST(v)

°2:y m=v[l], i=2 -> g(m,i,v,n)=RIGSTST (V).

Gntizing  the andearancse ¢f vll] an?® 2 in 72, e OWNTITI

TISTTST(VY in 2 as "IAYIvIL),RINgTSsT(vIi2..n1)), vhere TAX return:z
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the largest of its two arguments, and v{2..n] is a notation for
the subarray of v within the indicated bounds. The generaliza-
tion which suggests itself,

g(m,i,v,n)=MAX(m,BIGGEST(v{i..n])),

agrees with Cl.

Example 6 - If p is a pointer to a node in a binary tree,
let POST(p) be the sequence of pointers which point to the nodes
in a postorder traversal of the binary tree pointed to by p. The
following program constructs POST(p) in a sequence variable vs
using a stack variable stk. We use the notation 1(p) and (D)
for the pointers to the left and right subtrees of the tree
pointed to by p. If p has the value NIL, P08T(p) is the enpty
sequence. The variable rt points to the root of the input tree

to be traversed.

O := rt; stk := EMPTY; Vs 1= <>
while T(DP=NIL & sti=EMPTY) do
if »#NIL then
T stk <="3 /* push p onto stk */
2 = 1(p)
else
2 <= gtk /* 20D stk */ ;
vs 1= vs || <2>;
? = r(p) f£i
Cr"
fvs™= posT(re)}.

-

Up until ncw, we have attempted to infer a general Yoop» functionn

(31}

rom  two constraint functions. Of couresn, there is nothing spo-

ial 2h0ut the number two. In this exannie, the "coanection"

(]

yotwe2n the initializad wariableg and the furciion values is not

2lear from the first two oSonstraint functinng and it nroves hels-

g e

3 ——
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A Heuristic For Deriving Loop Functions

ful to obtain a third constraint function. Functions Cl and C2
correspond to 0 and 1 loop body executions, respectively. The
third constraint function C3 will correspond to 2 loop body exe-
cutions. We will use the notation (el, ... ,en) for a stack con-
taining the elements el, ... ,en from top to bottom. The con-
straint functions for this program are
Cl: p=rt, stk=EIPTY, vs=<> ->
g{p,stk,vs)=POST(rt)
C2: rt#NIL, p=1l(rt), stk=(rt), vs=<> ->
g{p,stk,vs)=POST(rt)
C3a: r&#NIL, 1(rt)#IIL, p=1(1(rt)), stk=(1l(rt),rt), vs=<> ->

g(p,stk,vs)=POST(rt)

|
\%

C3d: rt#NIL, 1(rt)=NIL, p=r(rt),  stk=EMPTY, ve=<rt>
g(p,stk,vs)=POST(rt).
Note that there are two third constrairt functions., C3a and C3bk

correspond  to executions of the first and second leoan hody paths

-

{on the cecond iteration), respectively. There is only Y sacen?

]

constraint function since only the Sirst lonp kedy path can be
&

enecuted on the first iteratinmn. Usirg the Tecuirsive “2finition

of PO37T, we RNEIINITD C2

Lk

, 322 and C3b as foallows:

=1{rt), sth=(rt), TI=E<> ->
=PO3T(1(rt)) l<re>!] POST(r (%))
AUIL, p=)(1(rt)), stk=(l(rt),ct}, vi=<> ->
=PO3T(L(1(x%))) |l<i(eey>!! Dramic(2(r2)))
Flevss!' | prem(r izl
T, T=xzt}, 3ti=2"107Y, vnzart> =3
(z,atk,ve)=<rt> | 2087m(rfru)y,
-220.
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A Heuristic For Deriving Loop Functions

Applying SUBSTITUTE to each of C2°, C3a” and C3b“ suggests
stk=(el), vs=<> -> g(p,stk,vs)=POST(p) ||<el>|| POST(r(el))
stk=(el,e2), vs=<> -> g(p,stk,vs)=POST(p) ||<el>|]| POST(r(el))

| |<e2>]] PoST(r(e2))
stk=mMOTY -> g(p,stk,vs)=vs || POST(p)

respectively. The first 2 of these functions imply the following

behavior for an arbitrary stack where vs has the value <>:
sti=(el, ..., en), vs=<> -> g(p,stk,vs) =

POST(p) || (<el>|| posT(el) || ... ||<en>]] POST(en))

and in combination with the last function, the general behavior

1]

stk=(el, ..., en) => g(p,stk,vs)
vs || PoST(p) || (<el>|]| PosST(el) || ... ||<en>|| PO3T(en))

is suggested.

In this section we have illustrated the use of our techrnique
on a number of example programs. The reacder Yas ce2n that the

succass ¢f the method hinges largely con the way PZTIRITI i< ner-

formed. “That guidelines can ke used in deciding how to applv

-

this 3t22? ™ie general rule given ahove {g to identify the vari-

-

ablsc  rthat need tc be introduced into the expressinn an? then =0

e

re2write the enpression uzcing the terms to which Shege wariazlles

Q

Zz2  tourd, Tor instanse ip Txanldle 3, HUCITS(L) wag rorrikten
135ing the terms 1 and SOMS{t). 3evond this ~»u'2, Thaovever, the

zzaler =m2y have noticed an  additicral sinilarity in the way
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some way. In Example 1, for instance, a multiplication operation

was decomposed into an addition and multiplication operation; in

; Zxample 3, a NODES operation was decomposed into a summation and
2 number of NODES operations; in Example 5, a BIGGEST operation
was decomposed into a MAX and a BIGGEST operation. 1In Section 6
; we will characterize this idea of decomposing the intended opera-
‘l tion of the initialized loop program and discuss several implica-

tions of the characterization for the proposed technique.

In Sxample 6, we saw that the technique generalizes to the

use of 3 (and indeed an arbitrary number of) constraint func-

HaLht At - B

tions. %We have seen that each of these functions defines a sub-~
set of the general loop function g being sought. If the con-
straint functions themselves are sufficiently general, it may Le

Ly that the first several of these functions, taken collectiv=ly,

constitute a complete description cf g. e consider this situa-

e

tion in the following section.

L

1. Complete Constraints

‘ mhe technigue cdescrihed above for oktaining a general lcop

functicn g "nondet2rmiristic" in that the constraint functinns

3

Jur belief igs that i+
e remainirg ""laces”

. .
agic A8 haon anto-
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There exist, however, circumstances when the constraints do
constitute a complete description of an adequate loop function.
Specifically, this description may be complete through the use of
l, 2 or more of the constraint functions. The significance of
these situations is that no guessing or "filling in the picture"
is necessary; the program can be proven/disproven correct using
the constraints as the general loop function. 1In this section we

give a formal characterization of this circumstance.

Definition - For some ¥ > 0, an initialized loop is N-closed
vith respect to its specification f iff the union of the con-
straint functions C1,C2, ... ,CN is a function g =such that the
loop 1is closed for the domain of g. 1In this case, the con-

straints C1,C2, ... CM are comdlete.

Thus if a loop is N-closed for some N>0, the union of the
first W consktraint functions constitutes an adegua%e loop func-
tion for the loop under consideration. Intuitively, the value
is a rne2asure of how quickly (in terms of the numbher cf loop
iteraricrns) the variables constrained by initizvization take »2n

"Jen27al" values.

TXam2l2 7 - The following progran
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is l-closed since the first constraint function is
Cl: b0>=0, a=al0+l, b=b0 ~-> g(a,b)=al0+b0+l
which SIMPLIFIES to
b>=0 -> g(a,b)=a+b
and the loop.is closed for the domain of this function, Thus C(Cl

by itself defines an adequate loop function.

Initialized loops which are l-closed seem to occur rarely in
Practice. Somewhat more frequently, an initialized loop will be
2-closed. For these programs, the loop function synthesis tech-
nijue described above (using 2 constraint functions) is deter-

ninistic.

Zxample 8a - Consider the program

un + head(seq);

um :
while seq # EMPTY do
= s
tail(seq)

The nctation SIGYWA(seal) appearing in the postcenition stands
for the sum of the elements in %4iie sequence secd. ™The programn is
2-220se4 since tha secon? ceonstraint furchion iz
22 3eql#TIPTY, sums=head(s233), sec=tail{seqgl) ->

q(sum,seq) =5SIG""A{geql}
which SIV2LIPITS &0

Ji3ua,c2q)=cun+3In“i{secC;.

The loop g trivially closed for the Jomata nf tMIs functicn.
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Example 8b - As a second illustration of a 2-closed initial-
ized 1loop, the following program tests whether a particular key
appears in an ordered binary tree.

success := FALSE;
while tree ¥ NULL & “success do
LALE TS

if name (tree) = key then success := TRUE’
elseif name(tree) < key then tree := right(tree)
else tree := left(tree) fi

od
{success = IN(key,tree0)}

The notation IN(key,tree0) is a predicate which is true iff Key
occurs in ordered binary tree tree0. This program is also 2-
closed. Note that the first constraint function
Cl: success=FALSE, tree=treeQ ->
g (success,tree,key) =IN(kev,tree0)
SIPLIFICS to
success=FALSE -> g(success,tree,key)=Ill(key,tree).
If we consider the first path througna the loop body, the second
constraint function is
2Z: s3uccess=TRUE, treel#Il, tra2e=tre2l, Xey=nzne(tree) ->
g(success,trae,key) =I(kev,tread)
which SIIPLITIZIS to
success=TRIE, tree#lll, key=name(trae) =->
g(3uccess,tree,key)=IN(key,tree).

Althcugh :he Jomain of the union of these tvwo funciiors is scme-

~ . . 1
({(“success) 2R (tree#MITL & Xey=rame(trze)));,

taie 1o9p i3 nevertheless close” Zfor %uiz denain ar? hence tha
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initialized loop is 2-closed.

Example 8¢ - Consider the sequence of initialized 1loops

P1,P2,P3 ... defined as follows for each I>0:

PI : {x>=0}

X 1= x * I.

while x > 0 do

X i=x-1;
Y : sy + Kk

od
{y=v0 + x0*1*k}.

For any I>0, the first I constraint functions for program PI are
Cl: x0>=0, x=x0*T, y=y0 -> g(z,y,k)=y0+x0*T*k

C2: x0>=1, x=x0*1-1, y=y0+k -> g(z,y,k)=y0+x0*T*k

CI: x0>=I-1, x=x0*I~(I-1), y=yO0+k*(I-1) -> g(x,v,k)=y0+30*I*k,
These 3IMPLIFY to
x>=0, MI(x) => g(xX,7,R)=y+x*k

x>=0, MI{x+l) => F(X,¥,K)=y+x*X

x>=0, MI{x+(I-1)) -> g{z,7,k)=y+x*X

where T is a predicate which is TRUT if€ i*s arcument is a nul-

. Since the uninan of these is Mo functi-n

I
2>=0 -> c (TI,Y,'*'-)=‘,'+:<*!<,

an? the leop is closed for the Iomain of =his fanctinn, 4 con-
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clude that for each I>0, program PI is I-closed.

For many initialized loops which seem to occur in practice,
however, there does not exist an N such that they are 'J-closed
with respect to their specifications. This means that no finite
number of constraint functions will pinpoint the appropriate gen-
eralization exactly; i.e. when applying the above technique in
these situations, some amount of inferring or guessing will
always be necessary. A case in point is the integer multinlica-
tion program from ZExample 1. The constraint functions Cl,C2,C3,
... define the general loop behavior for z=0, 2=k, 2z=2*%, ...
etc. The program cannot be N-closed for any N since with input
v=N+1l, the last value of z will be (N+1)*X which is not in the

domain of any of these constraint functions.

As a final comment concerning MN-closed initialized looms, it
nay ke instructive to consider the €cllowing intuitive view of
thizse programs. A'l 1l-closed anf 2-closed {initialized lcops
share the characteristic that thev are "forgerful", i.e. th2v
soon lose track of how "long" they have been executing and lack
the necessary -lata to vecover this irfarnmation., This ig fue to

L2 fact tha% intermediate Aata statas vthich occur 3ifker an ardi-

v

Lrarv aumber of iterations are inctistiaguishabl: from fata states

walch occur after 0 (or 1) loop iterations. 7o illustres», con-
zider the 2-2lose? initialized leop ¢ Zxamnle 3a which sums the
21nnants contained in a sequence. After soma arditrarv numher of
it2rations  in  an  exacution of thiz nreoram, suppnse we ston it

an’ inszect the values of the onrogran wariadlac zum and gew,

RO TP AL

>
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Based on these values, what can we tell about the history of the
execution? The answer is not too much; about all we can say is
that if sum is not zero then we know we have previously executed
at least 1 loop iteration, but the exact number of these itera-

tions may be 1, 10 or 100009.

By way of contrast, again consider the integer multiplica-
tion program of Example 1, an initialized loop we k%now not to be
N-closed for any N. Suppose we stop the program after an arbi-
trary number of iterations in its execution. Based on the values
of the program variables z, v and %, what can we tell ahout the
history of the execution? This information tells us a great
3eal; for example, we know the 1loop has iterated exactly 2z/k

times and we can reconstruct each previous value of tha variable

Initialized loops which have the information Available to
reconstruct their past have the potential to behave in a "iriciy"
manne2r. 3y "tricky" here, wve mean performing in such a way that
tevenids unexpectedly on the history of the execution of the lonop
(i.2. on the effect achieved by pravious lcop iteraticng). “ha
r231lt ~f  thig loon 2ehavior woull he 3 loop funckicn whrizh oz

"inconsistent" across 2all values of thz loop inputs and -High
couls anly Y2 inferred from the ccnstraint functions with consi’-
2radle 7ifficulty, “je congider this nhenomenon morae czrefulls (n
the fallowing section; for anw we emnhiasize that i+t i srveciselr

L2 2otential to “ehave in this arpleazant nannar that Y= lacking

in L=c 9se” and 2-2losed initializal loons 27 thizh™ avllges thoir

........
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A Heuristic For Deriving Loop Functions

general behavior to be described completely by the first 1 or 2

constraint functicns.

5. “Tricky® Programs

The above heuristic suggests inferring g from 2 subsets of
that function, Cl and C2. Constraint function C2 is of particu-
lar importance since PEWRITE and SUBRSTITUTE are applied to this
function and it, consequently, serves to guide the generalization
process. €2 is based on the program specification £, the ini-
tialization and the input/output behavior of the loop body on its
first execution. 1In any problem of inferring data concerning
some population based on samples from that population, the accu-
racy of the recults Jdepends largely on how representative the
samples are of the population as a whole. The degree to which
the sample defined in C2 is is representative of the unknown gen-

eral function we are seeking depmends entirely on how renrecenta-

cr
Ha

v

(]

the input/output behavior of thz loop hody on the first loop

il

iteration is of the input/output »Hehavior of the loop hedy on 2

ardbitrarv zubsaquent loop iteration.

To g3ive the reader the general idea of what we “ave {1 ~ind,

J

cnasider the Drogram tec count the nodes in 3 “inavy tree in ITxan-

-

sle 3. If th

1]

loop nodly did something neculiar when, for evan-
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s contained 2 noles with the sare parent nole, ov

men n had the

irst axeoution  wnald
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have been anticipated based solely on input/output observations
cf its initial execution. An application of our heuristic on 3
Programs of this nature would almost certainly fail since

(apparently) vital information would be missing from Cl and C2,.

N Example 5 - Consider applying the technique to the following ]
program vwhich 1is an alternative implementation of the integer

multiplication program presented in Example 1:

{v>=0}
z = 0;
while v # 0 do
if z=0 then Z = X
alseif z=k then 2z := 2z * 2 * y
else z :=2 - k £i;
vV = v - 1
3!
{z=70*k }

! The constraint functions Cl and €2 are identical to those for the
arogram  in Zxanple 1 anéd we have no reaseon to infer a different

i furction g. Yet this £function 1is not only an incorrect

5

aypcthesis, it do2s not even come close to descriding +he jJeneral

Dehavior of the loop. The Iifficulty is that tihz Dehavior of the

Toop boldy on its first execution is in no way typical of its gen-

e S
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(input/output) behavior of the loop body on the first iteration
is representative of its behavior on an arbitrary subsequent
iteration 1is really a question of whether its behavior when the
initialized variables have their initial values is representative
of its behavior when the initialized variables have "arbitrary”
values. Put still another way, the question is whether the 1loop
tody behaves in a "uniform” manner across the spectrum of possi-

ble values of the initialized data.

In practice, a consequence of a loop body exhibiting this
uniform behavior is that there exists a simply expressed connec-
tion ovetween different input values of the initialized data and
the <corresponding result produced by the WHILTE locp. It is the
existence of such a connection which notivates the SJB3TITUTE
step above and which is thus a necessary nrecondition for a suc-
cessful application of the technigue., This exnlains i:ts failure
in dealing with programs such as that in “xanple 3. “Je nalke no
further merntion of these "tricky" »rograms, and in the follovwing
secticn ‘iscuss an informal categorization cf "reasonahlz2" Hro-

jrams and consider its implications for our loop “unctizr =syn-

- ~r -
[ o and ‘n I elelpic]
——r — ettt
r = 3 b} . 3 e
In this section, wve disoues ganeral characteristics of  =any
Y- - s 3 ~d - (et} Y- I 3 - -

cermenly occurring ik2rative programs., These Zharacktavisticc ore
. 3 o~ - 4 1, . - -3 . 2
usal to suziyest S0 zZate3sries of those arolrins, Thit cakesori-
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loop functions is particularly useful when applied to initialized

loops in one of these categories.

In solving any particular problem, it often makes sense to
consider certain instances of the problem as being "easier" or
"harder" to solve than other instances. For example, with the
problen of sorting a table, an instance of the problem for a
table containing Y elements might be harder to solve than an
instance of the problem for a table containing N-1 elements.
Similarly, if the problem is multiplying natural numbers, a*b
might be easier to solve than (a+l)*b. This notion of "easier"
and "harder" instances of 3 problen is particularly apparent for
problems with natural recursive solutions. These solutions solve
complex instances in terms of less compleix instances and hence
support the idea of one problem instance being easier to solve

than anotner.

Tor the zurpose of this AQiscussion, ve Aivide the diats nodi-

fied bHy the initialized loop uncer cornsileration irto tun s=2c-

tions: the accunulating Jdata and the control Jata. The accumu-

lating 4ata is the specified output variable(s) of the loon. Tle
remaining mndified data is the contro’ “ata and cften s32rves Lo
"y1ife" the 2xacution 5f the lcop an? detarmine the noint at
waich the loop should terminate., Doth the accumulating
the control data are typically (but not alvays) constrained =v

-

initialization in Sront of the loe>s.

—— - e~
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A Heuristic For Deriving Loop Functions

Example 10a -~ In the program

{n>=0}

2 :=1; t := 0;

while £t # n do
t :=t + 17
Z := 2 * ¢t
od

{z=nT1}

the variable z is the specified output of the loop and is hence
the accumulating data. The other modified variable, t, is used

to control the termination of the loop and is the control dJata.

In many cases, the centrol data can be viewed as revnresent-
ing an instance (or perhaps several instances) of the problen
Heing solved. As the loop executes and the control “?ata changes,
the control data represents different instances of this problem.
T™» illustrate, we can think of the control Zata t in the vrevious
exanmnle as a variable describing a particular instance cof the
factorial problem. As the lcoon executes, the variable t takes on

D o

me wvalues C, Y1, +«.., n, ancd

a3

these valueec zan H2 thought to

corresdond Lo the proonlems 0!, 1), ... nt.

Zased on these informal observations, we characterize a2 71U

1o InstInce to e snlvel, In the executionn of a 23U Toon, the

- LY Vb o \ a3 e, Y g . "o . T mla e~
TONCr TG LWata 237 D0 vigrce 28 venregenting the w0rL that 3
e ~ T3~ " o " [ R4 ] [Uht ~ I I E
s2an agcomnlished 3¢ TAr. LS 2DNSLLAT o JACTOrS o 2ro5TeET

—

Al "o e
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A Heurigtic Por Deriving Loop Functions

accomplished is t! and t moves from O (a simple factorial

instance) to n (the input factorial instance).

.v . '._L

Conversely, we characterize a TD (from the Top Downward)
loop as one where the control data problem instances are gen-

erated in order of decreasing complexity, bheginning with the

. input problem instance and ending with a simple nroblem instance.

i
|

In the execution of a ™D loop, the control Aata can be vieved as

representing the "work" that remains to he done.

Exanple 10b - We consider the following alternative imple-

mentation of factorial to be a TD loon:

{n>=0}
2 := 1l t := n;
while t # 0 d»o
Z := 2 * t;
i t 1=t -1
od
lz=nTt}.

i Az before z and t are the accumulating and control Jata respec-
ﬂ tively. The wvariable t nmovez “zom n {(thz inzut factorial

N7 2nds with €@ (a simple “actorial instance). After
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a: {y>=0} B: {y>=0} c: {y>=0}
w:=l; t:=0; we=l; t:=y: w:=l; c:1=x; t:=y;
while t#y do while t#0 do while t#0 do
W o= w*X; W o= w¥X; 1f 0dd(t} then
t = t+l t := t-1 w = w*c f1i;
od od c:=c*c; t:=t/2
{w=§*y} {w=§*y} od
{w=x"y}

As before, the symbol © is used as an infix exponentiation opera-
tor. le consider program A to be a EU loop. The control 2data t
moves from 0 to y and corresponds to the problem instances x70,
eeer XY On the other hand, B is TD since the control 4ata t
moves from y to 0 and corresponds to the problem instances x7y,
eeey %70, Program C (similar to that in Example 2) is slightly
nmore difficult to analyze. The control data is the pair «<c,%t>.
The pair is initialized to <x,y> and =2nds with the value <c”,0>,
where ¢” is some complex function of x and y. It seemg reason-
able to considar <c,t> as representing the 3roblem c¢™t. lence wa
conclude Z is also TD. This conclusion also na%es sense in Tight
of the fact that C i3 reallvy an optinized verszion of T which

zaves ikterations hy 2unloiting the hinary dacerdositicn of v,

tatinn 0f the meaniry or Juzpose of thie conktral “aka, T2 cloaczi-
£iel *the above programs 2y usirg vhat we corsilere? &5 Le thn
mnst "natural" cor intuitive internretaticn; cther intarpratatiors
zr2 alvaye dossibile. fNerasicnally, ko “lfferent intermrataticon:
oS Eh2 fontra’ Tikta zZeen ecually wiliT anT enca the ToNTron v
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view. For example, consider the following program which adds up

the elements in a subarray between indices vl and p2:

Q

t’ {sum=AsmM(alpl..p2])}.

The notation ASUM(a[pl..p2]) appearing in the postcondition

stands for the summation of the elements in the indicated subar-

rav. The question which arises in attempting to <classify this

2rogran iz as follows: as the control data i moves through the

values pl, pl+1l, ..., P2, is it most appropriate to think of it

Crw e TET T YN T

as representing the problem instance which has been solvad (i.e.
AsuUii(a{pl..i])) or as representing *he problem instance which
remains to be solved (i.e. ASUM(ali..p2])). Eoth views seem
2qually intuitive, that is, the program se=2ms to Ye as nuch 2T acg

it is ™.

|
1
|
i
3 As 2 firnl exanple, vwe refer back to the drogram in  Ixzample

L, 3 which counts the nordaes in a binary tree. Tt is clear n an %he

L 2

B N
et 7zariastle 3 are

-
e —— - i+ ar rmt e v a-
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le have seen that the problem solving method taken by a BU
loop is one of approaching the general problem instance from some
simple problem instance. Of course, this problem solving method
is reasonable only when there exists some technique whereby one
is guaranteed to "run into" the general problem instance. Our
view 1is that in many cases, such a convergence technique either
does not exist or requires so much support that the 3U approach
is not practical. This appears to be particularly true €or pro-
jrams dealing with sophisticated 3Jata types (i.e. something other
than integers) and for programs requiring a high degree of effi-

cisncy in their number of iterations.

To help see this point of view, again conszsider the ™ODES
orogram of =Example 3. Previously we argued that this was a ™D
program. wiat would a BU program which compute? the same func-

ticn look lik2? The following program skeleton suggests itsel€:

n := §; 1 := "an emptv trze";
while #1 # £t “o
"227 a no ;

de to t1 to nake it Yook moraz like t®
;

J 3
[
W
o]
+

2 problen INTES(RY). Tae  Fifficulty with this attempt &t =

cragranm solution is the iaplenentation of the nolificaticon of tl.

» . A LI B L r .3 !

af ¢ n orler to nove L tovar? k£, T Vizhe o7 £hig, it sears
| . \J o ” ol q 4 2 AR b -

more reaeonnadle 4o gounk a0 rnodin n L MiYa it ds onirg
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A Heuristic PFor Deriving Loop Functions

an illustration of another circumstance where

; a 3U implementation of integer exponentiation which operates as

exponentiation program C from Example 1ll.

5_‘ Again, a program skeleton suggests itself:

{y>=0}
w::=1l; ¢ :=2?; 4d := 0;
while <c,d> # <x,y> do
¢ = sqrt(c);
if 2 then
" d = d* 2+ 1; w =W ot
else d :=d * 2 fi
92 ==
{w=x"y}.

are attempting to move the control data <c,d> toward
fast as we moved it away from <x,y> in TD program C. As
BU NODES program, the problem here is how to complete
gram so as to achieve the desired effect. Qur conclusion
ng this program is that supplying an appropriate initial
or ¢ and Cetermining the proper looo body path to dDe exz-
guires such complexity that this avproach is not a feasi-

rnative to pregran C.

rn

this section we

»
.

ave suggestel two informal categoriec ©

pPrograns. e offe

)

2l the

]

taken in a 3T program solution has ratier limited appli-

and  that 7D programs ten? to occur Tore Trequent’y in

« "2 fse! *hat this charactarization {e useful as a

archlenr z2alving Zhiilosenhiss LDut our Nata

e -

tizate e XKinds  of

(%)

R

the BU

seems unreasonable, the reader is encouraged to imagine
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occurring programs on which the loop function synthesis technique

described above works well.

Consider applying this technique to a general TD program.
In the second constraint function, the control data is bound to a
value which represents a slightly less complex instance of the
general problem being solved by the initialized loop. 1In prac-

tice, the appearance of this value in the constraint function

suqgests the problem decomposition being e:xploitaé by the pro-

grammer in order to achieve the program result. applying this
decomposition in REWRITE leads gquite naturally to the desired

general loop function.

cxample 12 - Consider the TD factorial program from Example
10b. The second constraint function is
c2: n>C, z=n, t=n-1 -> g(z,t)=n!
~"he control Jata t being bHound to n-1l suggests RIURITTING 11 as
n*{n-1)!. This leads to the correct general loop function. Mn
the other hand, consider the secon” constraint Sfunctien for the

-~ ey

=) factorial program from Zxample 1lCa:

the gsecond corstraint functiar for kle 7T
gran 2 €freom Tuangte 1l
A

- 1 ce ) - «
E=v=l <> g{u,t,x)=x"y
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and the second constraint function for the BU exponentiation pro-
gram A from the same example:

c2: y>0, w=x, t=1 -> g(w,t,x,y)=x"y.
In both cases, the proper loop function may be obtained by wusing
the REWRITE rule x"y = x*(x"(y-1l)); however, this particular rule
seens more strongly suggested in the constraint function for the

TD program.

7e remark that the same general phenomenon occurs with TD
programs in the event the control data has been SIMPLIFIED out of
the domain requirement for C2. In this case, the fact that the
control data represents a slightly less complex instance of the
general proolem being solved manifests itself in the function
expression for the SIMPLIFIID C2 being a slightly more conmplex
instance of the problem being solved, For exanple, the con-
straint function C2 above for the TD exponentiation program B of
Zxampls 11 can be SIMPLIFITD to

£>=0, w=x -> g(w,t,x)=x"(t+1l).

< ad

32fore, the aprearance of y-1 in the Jomain requirerment sugcgests
rewrittin v as x*(x"(y-l)). Here, the appearanc2 of t+l in

2 “unction expression suggests rewritting x"(t+l) as  x*¥Ix"t)

D]

(s2e also

xanples 1 and 2).

Suppese £ is5 the operation or function the initialize?® “nod
pregrar is  intended to cemnute. In 3ectinn 3 we adbserv2l that
each MXTITE in the exanples of that sectien involve?l " lacomnos-
ing"™ an apdlication of E. Thig Ja2copositior corresoprn’s ko

.

savritting that problem instance in t2rns of a3 slightly less

S
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complex problem instance {(or instances). 1In general, of course,
there are many ways this decomposition can be performed. 1In *the
examples of that section, however, as with all TD programs, the
nature of the control data guides this decomposition and thus

tends to make the REWRITE step quite straightforward in practice.

The reader may have noticed that the general loop functions
for the BU factorial and expdnentiation prograns contain more
program variables and operations on those variables than their T
counterparts. For instance, the general loop functions for the
30 and TD factorial programs are

O<=t<=n -> g(z,t,n)=z*(n!/t!)

O<=t -> g(z,t)=z*t!
regpectively. This €act, by itself, helps explain why the
REYRITE step seems nore Aifficult for the 27 programs. Tt would
Je a nistake, however, to assun2 that the BU programs are xore
"complex" or are nore Aifficult to analyze or »2rove. e consider
T3 lceds to b2 sonmevhat more suscentible %o the foram of induction
2nploye” ir  functional 1locp verification. liore precisely, tae
inductive aypothesis reguired in this type 9oF odreof (i.2. 2 gen-

b &~
2711 stateneaer

o3

t concerting e locn innut/outnuit hHenhavinr) searns
to Ce more 2azily statad for 7D projrames than for 3T nrogranrs.
on the »ather hand, =7 droqgrams seem somewnah more suscedstikle teo
22 intactive 2esertion Trzoof., Tha infuctivs hWovothaesis  racuicel
lmen inveriaont)

thnse wvari-

PPse wan

M SO e Y
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A Heuristic Por Deriving Loop Functions

ables than the same type of hypothesis for the corresponding TD
loop. As an example, the BU and TD factorial programs have ade-
quate loop invariants 0<=t & z=t! and 0<=t<=n & z=n!/t! respec-

tively.

In [Manna & Waldinger 70}, the authors describe a program
synthesis technigue and point out that their method produces
either of the above factorial programs depending upon which tvpe

induction rule the synthesizer is given to employ.

Z. Related Work

In {Basu & Misra 76, Misra 73, Misra 79], the authors
describe w0 classes of "naturally provabhle" programs for which
generalized loop specifications can be obtained in a determinis-
tic manner. Oour technique sacrifices determinism in favor of
wile applicability and eas=z of use. It handles in a fairlvy

straightforwar? manner typical

"y

rograms in these two program

4

classes (e.g. Dxamples 1-3) as well as a number of programs

A

which do not fit in either of the class

[¢]
n
"~
D
[T9]

Txanples 4-35).

Jue to the close relationship bLetyeen Io9p functinns  and
lcop invariants (see, for example, [Yorris & Weqbreit 771), anv
technigue €or synthesizing loom invariarts can %e viewed as 2

tecuinigue for synthesizing gensral lood functinne  (and

pih gt 5 wragel vl

i < =,
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A Heuristic For Deriving Loop Functions

by pushing the previous approximation back through the loop once,

twice, etc.

By way of illustration, consider the exponentiation program
of Example 2. The loop exit condition can be used to obtain an
initial loop invariant approximation

d=0 -> w=c0°40.

This approximation can bhe strengthened by pushing it back through
the loop to yield

(3=6 -> w=c07d0) & (d=1 -> w*c=c0730).

In the analysis presented in Example 2, we obtained a value for
the generalized function specification for each of two different
values of the initialized variable w (i.e. 1 and SCRT(c)); here
we have obtained a “value" for the loop invariant we are seeking
for each of two different values of the variable vwhich contrels
the termination of the loop 4. Applying the analvsis in [orris
& "lJegbreit 77}, these loop invariant "values" can he translate”
to constraint functions as £n2llous:

3= -> g(v,2,q)=w,

A=l => 5 (w,c,qd)=u*c,

0f zourze, the function expression «*c in the secend censtraint

can He rauritten w*(c”l); SU3ISTITUTING as usual 3uqg

Vo]

Aasts the gen-

2ral loop functicon
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We summarize the relationship between these two techniques
as follows. As the initialized loop in question operates on some
particular input, let X([0}, X(1], .. ,X[N] be the sequence of
states on which the loop predicate is evaluated (i.e. the loop
body executes -1 times). Of course, in X[0], the initialize?
variables have their initialized values, and in X[N], the loop
predicate evaluates to FALSE. The method proposed in this paper
suggests inferring the unknown loop function g from X[0], X[1],
g(X[0]) and g(XI[1]). The loop invariant technique descrited
above, when viewed as a loop function technique, suggests infer-
ring g from X[u], X[u-1], g(X[¥]) and g(xIn-11). Speaking
roughly then, one technique uses the first several executions of
the loop, the other uses the last several executions. One
ignores tha information that the loop must compute the identity

function on inputs where the loop predicate is FALSE, the other

D)

ignores the information that the loop must compute like the ini-
tializad loop when initialized variables have their initialized
values.

tarliar we Jiscussed "top Jdown"™ an?t "bottom up"  approachkes
to syntiesizing g and indicated that our teshnique fit in the

In ouar view, Nhowever, there are a2 rumber ~f circumstancais v lar

cased »n e first
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the YODES program, the program to compute Ackermann’s function
and the TD factorial program discussed above. The reason is that
a critical aspect of the general loop function is the €function
computed by the initialized loop program (e.g. exponentiation in
the above illustration). 1In the technique based on the first
several iterations, this function appears explicitly in the con-
straint functions. 1In the other technique, this information must
somehow be inferred from the corresponding constraint Ffunctions
2.9. by looking for a pattern in these functions, etc.). This
difficulty 1is inherent in any "bottom up" approach to synthesiz-

ing g.

8. Concluding Remar4s

In this paper we have proposed a tecnnique £for deriving
functions which describe the general behavior of a loop which is
preceded by initialization. These functions c¢an be wused 1in a

functional [Mills 75] or subgeal induction [Morzis &
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loop programs. The result is that a loop function g for a loop
which is N-closed (for some N>0) can be synthesized in a deter-
ministic manner by considering the first N constraint functions.
Hence this categorization can be viewed as one measure of the
"degree of difficulty” involved in verifying initialized loop

programs.

An interesting direction for future research is the develop-
ment of a precise characterization of programs which are not
"tricky" (as discussed in Section 5). Preliminary results along
this line are described in [Dunlop & Basili 31] (see also [Basu

301).

In Section 5 we discussed on an informal level the opposing
30U and TD problem solving strategies and their corresponding ini-
tialized loop realizations. Wle argued that the TD approach
appeared to be more widely applicable and that, in practice, TD
arograms seem to occur more freguently. Ye explained the success
of the proposed loop function creation techniquz on these pro-
grams in terms of an easily applied RIWRITE step. These results
are offered to help support our view that the technique may be

ONs.

[

successfully avplied in a wife range of applicat
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